REAL-TIME MONITORING OF ORGANIC APPLE (VAR. GALA) DURING HOT-AIR DRYING USING NEAR-INFRINGEMENT SPECTROSCOPY

Roberto Moscetti, Flavio Raponi, Serena Ferri, Danilo Monarca, Riccardo Massantini*

aDepartment for Innovation in Biological, Agro-food and Forest system, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
bDepartment of Agricultural and Forestry Sciences, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
* Corresponding author: Tuscia University, Department for Innovation in Biological, Agro-food and Forest system, S. Camillo De Lellis snc, 01100 Viterbo, Italy. Tel.: +39 0761 357496; fax: +39 0761 357498. E-mail address: massanti@unitus.it (Massantini, R.).

ABSTRACT

Dried apple (Malus domestica B.) shows a growing trend to its worldwide consumption as raw material to produce organic snacks, integral breakfast foods, chips, etc. Apple is often dried by conventional methods (e.g. hot-air drying, freeze-drying, etc.), which are usually uncontrolled and then prone to product quality deterioration. Thus, there is a need for the development of new drying systems able to guarantee high-value end products. In this study, the feasibility of NIR spectroscopy as smart drying technology to non-destructively detect and monitor physicochemical changes in organic apples wedges during 8-h hot-air drying at 60°C has been investigated. Moreover, the impact of microwave heating pre-treatment (at 850W for 45 sec) as enzyme inactivators on model performances was also evaluated. Partial least squares (PLS) regression models were successfully
developed to monitor changes in water activity ($R^2 = 0.97\div0.98$), moisture content ($R^2 = 0.97\div0.98$), SSC ($R^2 = 0.96\div0.97$) and chroma ($R^2 = 0.77\div0.86$) during drying. Classification analysis was performed for the development of discriminant models able to recognise dehydration phases of apple wedges on the basis of their spectral profile. The classification models were computed using K-means and Partial Least Squares Discriminant Analysis (PLS-DA) algorithms in sequence. The performance of each PLS-DA model was defined based on its accuracy, sensitivity and specificity rates. All of the selected models provided a very-good (>0.90) or excellent (>0.95) sensitivity and specificity for the predefined drying phases. Feature selection procedures allowed to obtain both regression and classification models with performances very similar to models computed from the full spectrum. Results suggest that effect of microwave heating on both water loss and microstructure of apple tissue was pronounced, mainly affecting the features selection procedure in terms of selected wavelengths.

Keywords: *Malus domestica* B., smart drying, apple wedges, convective air drying, chemometrics, feature selection

ACKNOWLEDGMENTS

The authors gratefully acknowledge CORE Organic Plus consortium (Coordination of European Transnational Research in Organic Food and Farming System, ERA-NET action) and Mipaaf (Ministero delle politiche agricole alimentari e forestali - Italy) for financial support through the SusOrganic project titled: ‘Development of quality standards and optimized processing methods for organic produce’. Moreover, our sincere thanks to the master student Mirko Grilli for his valuable help and support during the experimentation.