

11th Workshop on MANAGEMENT OF INNOVATION IN THE AGRICULTURAL & FOOD SYSTEMS OF THE MEDITERRANEAN REGION

(Gestione dell'Innovazione nei Sistemi Agroalimentari della Regione Mediterranea)

Giovedì 1 Giugno 2017 Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente (SAFE) Via Napoli 25 Foggia – Aula Magna "Di Stefano"

QUALITY AND DRYING BEHAVIOUR OF ORGANIC FRUIT PRODUCTS

Prof. Riccardo Massantini

Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy)

🖃 massanti@unitus.it

OUR RESEARCH GROUP AND COMPETENCES

RICCARDO MASSANTINI Associate Professor

ROBERTO MOSCETTI Post-Doc

FLAVIO RAPONI Ph.D. STUDENT 2ND YEAR

SERENA FERRI Ph.D student 1ST YEAR

- 1. Chemical, physical and physicochemical analysis on food
- 2. Image analysis and computer vision
- 3. Vis/NIR and SWIR single-point spectroscopy and hyperspectral imaging
- 4. Chemometrics and Machine Learning (e.g. Deep Learning and Transfer Learning)
- 5. Internet of Things and sensors
- 6. virtual development environment, 4GL software (i.e. R, Python and Matlab) and agnostic programming platforms

DRYING OF FOOD CONSISTS OF THREE STEPS ...

PRE-DRYING PROCESSING

IT DEPENDS ON THE PHYSICAL STATE OF THE MATERIAL SUBJECTED TO DRYING

2

DRYING

READY-TO-EAT

QUALITY INDICES ASSESSED BY CONSUMERS

SEMI-PRODUCT

QUALITY INDICES IMPORTANT IN FURTHER PROCESSING AND AFFECTING PROPERTIES OF THE FINAL PRODUCT

Post-drying Handling

THE DRY PRODUCT IS NOT IN A THERMODYNAMIC EQUILIBRIUM STATE

- » PRE-DRYING TREATMENTS AND DRYING AFFECT PRODUCT STORABILITY
- » POST-DRYING TREATMENTS SHOULD MINIMIZE OR PROTECT THE MATERIAL FROM FURTHER CHANGES
- PRODUCT IS MORE STABLE WHEN IT IS IN A GLASSY STATE THAN IN RUBBERY STATE
- » CONTACT WITH OXYGEN PROMOTES OXIDATION OF LIPID-LIKE SUBSTANCES (I.E. CAROTENOIDS)
- » POST-DRYING PROCESSING IS ALSO INTENDED TO ADD VALUE TO THE FINAL PRODUCT

PHYSICOCHEMICAL CHANGES

- » MOISTURE CONTENT AND WATER ACTIVITY
- » Shape and size
- » FIRMNESS AND TEXTURE
- » PIGMENTS CONTENT
- » ENZYMATIC AND NON-ENZYMATIC BROWNING

NUTRITIONAL CHANGES

- » VITAMINS CONTENT
- » CAROTENOIDS CONTENT
- » TOTAL POLYPHENOLIC CONTENT
- » ANTIOXYDANT CAPACITY

SENSORIAL CHARACTERISTICS

WHICH ARE THE MAIN INTERESTS OF AN ORGANIC CONSUMER?

FINALLY, YET IMPORTANTLY, DEMAND FOR ORGANIC FOODS IS DRIVEN PRIMARILY BY <u>CONSUMER PERCEPTIONS</u> OF THEIR QUALITY

SENSORY PERCEPTION OF FOODS

COLOUR

FLAVOUR

RELATIONSHIP BETWEEN

NUTRITIONAL VALUE OF ORGANIC AND CONVENTIONAL FOODS

Cultivar

AGRONOMIC VARIABLES

Soil type

Organic matter

Planting date

Harvest date

Trace elements

Replication

Duration

PRODUCTION METHODS

Statistical design

Sampling of plant

Sample size

Nutritional analyses

Geographical location

Climate

Seasonal variations

Storage conditions

Post-harvest processing

Plant disease

OUR RESEARCH WORK APPLE CARROT Malus domestica B. Daucus carota L. var. Gala var. Romance Shape and size Shape and size Wedges of 3-mm thickness *Slices of 3-mm thickness* Pretreatment Pretreatment Hot-water blanching Hot-water blanching **Drying temperature Drying temperature** 60°C (for 8 h) 40°C (for 8 h)

HEAT EXPOSURE

CAROTENOIDS ISOMERIZATION

OXIDATIVE PROCESSES

NUTRITIONAL VALUE

HOT-WATER BLANCHING - PEROXIDASE ACTIVITY -

HOT-WATER BLANCHING - COLOR ANALYSIS -

1921

Blanching comparison (90°C vs 95°C)

EXPERIMENTAL PROTOCOL

- > Product: carrot slices
- > Slice thickness: 5 mm
- > Blanching temperature: 90, 95°C
- > Blanching time at 90°C: 0.0, 1.0, 2.0, <u>3.0</u> min
- > Blanching time at 95°C: 0.0, 0.5, 1.0, <u>1.5</u> min

BLANCHING EFFECTS ON CARROT COLOR COORDINATES

- > Decrease in Luminance (L*)
- > Increase in Hue Angle (h)
- > Decrease in Chroma (C*)
- > Increase in ΔE^* (>5, high difference between colors)

Temperature 90 95

HOT-WATER BLANCHING - TOTAL CAROTENOIDS -

CORE organic

Wavelength (nm)

HOT-WATER BLANCHING - TOTAL CAROTENOIDS -

1-+2-1

CORE organic

Wavelength (nm)

alles

QUALITY PARAMETERS DURING 8-H DRYING

Treatment	Drying phase (K-means)	Drying time (hour)	Water activity (a _w)	Moisture (relative)	SSC (°Brix)	Lightness (L*)	Hue angle (<i>h</i>)	Total carotenoids
Control		0	0.88 ± 0.04 a 📥	0.90 ± 0.02 a 📥	6.35 ± 1.43 f 💻	53.61 ± 1.47 f 💻	51.82 ± 0.37 bc	50.75 ± 3.05 d
	I	1	0.84 ± 0.04 ab	0.86 ± 0.01 ab	8.58 ± 0.99 ef	57.38 ± 1.36 e	53.43 ± 0.50 ab	52.90 ± 5.66 d
		2	0.82 ± 0.05 b	0.85 ± 0.01 ab	8.56 ± 1.27 ef	58.70 ± 1.60 de	53.32 ± 0.62 bc	66.26 ± 15.09 d
		3	0.64 ± 0.03 c	0.82 ± 0.03 b	10.57 ± 1.64 de	61.65 ± 4.28 bcd	50.40 ± 1.38 c	154.88 ± 37.01 c
	П	4	0.62 ± 0.03 c	0.67 ± 0.09 c	14.69 ± 3.15 bc	64.67 ± 2.14 ab	50.18 ± 0.95 c	205.63 ± 87.36 bc
		5	0.45 ± 0.03 d	0.72 ± 0.05 c	12.02 ± 3.54 cde	62.86 ± 2.68 abc 🕇	53.17 ± 1.93 bc	261.22 ± 81.76 ab
		6	0.46 ± 0.04 d	0.49 ± 0.15 d	14.09 ± 5.80 cd	65.12 ± 1.49 a 🕂	55.16 ± 2.32 ab	294.65 ± 61.04 a
	111	7	0.45 ± 0.04 d 🚽	0.45 ± 0.09 d 🚽	18.67 ± 5.25 ab 💆	58.86 ± 2.69 de	51.89 ± 1.17 bc	297.32 ± 44.30 a
		8	0.42 ± 0.02 d 📥	0.25 ± 0.07 e 📥	20.02 ± 7.25 a 🕇	60.63 ± 2.23 de	50.52 ± 0.96 c	178.68 ± 29.63 c
		p value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
		HSD	0.04	0.06	3.99	2.72	1.84	71.30
Hot-water		0	0.91 ± 0.03 a 📥	0.91 ± 0.01 a 📥	5.75 ± 0.51 c 💻	49.00 ± 1.89 c	56.55 ± 1.98 a 👎	35.74 ± 6.25 d
blanching	I	1	0.90 ± 0.02 a	0.89 ± 0.01 a	5.35 ± 0.75 c	50.55 ± 2.33 c	56.12 ± 1.66 a	45.27 ± 11.11 d
		2	0.88 ± 0.03 a	0.86 ± 0.02 a	7.13 ± 2.21 c	51.42 ± 1.84 bc	55.00 ± 1.41 a	65.18 ± 17.70 cd
		3	0.77 ± 0.03 b	0.63 ± 0.07 b	7.40 ± 1.69 c	59.91 ± 2.72 a	51.86 ± 1.36 b	89.97 ± 24.46 cd
	Ш	4	0.70 ± 0.08 c	0.44 ± 0.14 c	15.96 ± 6.14 b	60.13 ± 2.33 a	49.77 ± 2.30 cd	239.58 ± 47.43 b
		5	0.68 ± 0.07 c	0.49 ± 0.08 c	19.55 ± 7.37 b	60.96 ± 2.25 a	50.61 ± 2.01 bc	234.04 ± 78.81 b
		6	0.50 ± 0.07 d	0.20 ± 0.07 d	35.79 ± 8.08 a	54.82 ± 7.16 b	48.79 ± 1.89 de	292.47 ± 69.77 a
		7	0.49 ± 0.08 d 🚽	0.19 ± 0.03 d 🚽	31.68 ± 6.09 a 🔻	52.63 ± 3.47 bc	47.50 ± 1.38 e 🕇	275.45 ± 27.87 ab
		8	0.40 ± 0.02 e 📥	0.17 ± 0.02 d 📥	32.71 ± 8.72 a 🕂	54.72 ± 6.27 c	47.66 ± 1.08 e 💻	304.57 ± 31.62 a
		p value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
		HSD	0.05	0.06	5.53	3.83	1.71	42.54

NIR SPECTROSCOPY TO MONITOR THE DRYING PROCESS

1-+2-1

CORE organic

QUALITY AND DRYING BEHAVIOUR OF ORGANIC FRUIT PRODUCTS 11TH WORKSHOP ON MANAGEMENT OF INNOVATION IN THE AGRICULTURAL AND FOOD SYSTEMS

OF THE MEDITERRANEAN REGION - JUNE 1, FOGGIA, ITALY

PARTIAL LEAST SQUARES (PLS) REGRESSION MODELS

CORE organic

PLS DISCRIMINANT ANALYSIS - CLASSIFICATION MODELS

CONCLUSIONS

- 1. PPO (apple) and POD (carrot) activities were monitored as markers for enzyme inactivation
- 2. Hot-water blanching for 1.5 min at 95°C was selected as the best feasible pre-treatment on carrot
- 3. Results showed advantages of NIR spectroscopy for online monitoring of moisture ratio, water activity, colour and nutrients in both *apple* and *carrot*
- 4. NIR spectral profiles allowed recognition of drying phases in both *apple* and *carrot*
- 5. Prediction models based on few wavelengths showed metrics comparable to models obtained from full spectra

THANK YOU FOR YOUR ATTENTION