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The objective of this research was to develop a hyperspectral imaging system for
estimating copper concentration in soils as an alternative to standard chemical analy-
ses and to evaluate the analytical accuracy of the system using the visible–near-infrared
and near-infrared regions. Hyperspectral imaging is a complex technology providing
elevated information content. This work was carried out on air-dried <2-mm soil
fraction contaminated by adding 20 mL of copper sulfate at concentrations ranging
from 0 to 1000 mg of copper per kg of soil. The samples were scanned in random
order and with orientation using visible–near-infrared and near-infrared spectropho-
tometers. A range of partial least squares regression models derived from the spectral
arrays were tested on their ability to predict copper concentration. Significant cor-
relations between predicted and known chemical concentrations were achieved with
a correlation coefficient of 0.93 for the visible–near-infrared and 0.77 for the near
infrared.

Keywords Agricultural polluted soil, copper, hyperspectral imaging, partial least
squares, vineyard

Introduction

Copper (Cu) is a frequent soil contaminant because of its wide use in agriculture (Alva,
Huang, and Paramasivam 2000) and industry and high concentration in mine spoils (Arias
et al. 1998). Although it is an essential element, high Cu concentration is potentially
toxic to microorganisms, inhibits soil enzyme activity (Bääth 1989; McGrath, Zhao, and
Lombi 2002; Sauvé 2006), and is phytotoxic and negatively correlated with plant growth
parameters (Alva, Huang, and Paramasivam 2000; Ali et al. 2004; Bes and Mench 2008).
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1402 F. Antonucci et al.

The pollution of agricultural soil by Cu commonly occurs through the addition of
contaminated waste matter, mineral fertilizers, and some pesticides. Generally, these com-
pounds have been used to control fungal diseases as mildew, leaf spots, and blights
in orchards, vineyards, and vegetable crops (Dell’Amico et al. 2008). Moreover, ele-
vated levels of Cu in European agricultural soils result from applications of manure or
sewage sludge. European Community regulations (EEC 1986) limit soil Cu to 50 mg kg−1

where sewage sludge is to be spread. Copper originating from the intensive application of
Cu-based fungicides belongs to the most important contaminants of vineyard soils as its
concentrations exceed European legislative limits in the majority of these (Komárek et al.
2010).

The Italian Association between Public Agrochemical Laboratories (SILPA) was
started in 1994 to collect soils samples in vineyards and determine if Cu is linked by super-
ficial layers or is partially leached through deeper horizons. A decreasing gradient of Cu
was found passing from superficial to deeper layers (Deluisa et al. 1996). Generally, the
toxicity of Cu depends also on the depth of the root system (Magalães, Sequeira, and Lucas
1985). Because copper bioavailability is influenced not only by soil physical and chemi-
cal properties (Boon et al. 1998; Wenger and Gupta 1998; Alva, Huang, and Paramasivam
2000) but also by environmental factors such as climate, biological population, and source
of contaminants (Yaron, Calvet, and Prost 1996; McLaughlin et al. 2000), correlation
between total and bioavailable Cu cannot be predicted accurately (Pietrzak and McPhail
2004). As reported by Pietrzak and McPhail (2004), in recent decades a great number of
sequential extraction techniques, such as fractionation and portioning, have been developed
to study the physical–chemical forms in which Cu exists in soils. Moreover, agricultural
and environmental planning requires data on soil properties for activities such as nutri-
ent (Islam et al. 2003), carbon management (Garten and Wullschleger 1999), and land-use
change management (Zornoza et al. 2008).

The spatial and temporal resolutions of soil sampling to acquire these data are lim-
ited by the cost and time required for traditional soil analysis. Practical methods that can
rapidly estimate soil properties are needed to improve quantitative assessments of land-
management problems (Shepherd and Walsh 2002) and to make precision soil management
feasible (Viscarra Rossel and McBratney 1998a). Recent developments in imaging spec-
trophotometry that digitally captures and processes reflectance spectra to quantify soil
properties are now desirable developments from spectroscopic techniques [e.g., mass spec-
troscopy (MS), nuclear magnetic resonance (NMR), visible (VIS), near-infrared (NIR), and
mid-infrared (MIR) spectroscopy] as they offer alternatives to improve or replace conven-
tional laboratory methods of soil analysis (Janik, Merry, and Skjemstad 1998). A great
number of these techniques are nondestructive, preserve the integrity of the soil system,
and provide larger amounts of inexpensive spatial data (Viscarra Rossel et al. 2006). The
most recent advances in quantifying soil properties have focused on using narrow wave-
band VIS-NIR sensing (Viscarra Rossel et al. 2009), while the state of the art in optical
sensing for this type of problem has started to encompass hyperspectral sensing (Ben-Dor,
Irons, and Epema 1999).

Hyperspectral imaging is a complex technology that provides elevated information
content while being rapid, nondestructive, and cost-effective. Hyperspectral sensors col-
lect information as sets of “images.” Each image represents a range of the electromagnetic
spectrum and is referred to as spectral band. These images are then combined to yield a
three-dimensional hyperspectral cube for processing and analysis. The technique integrates
conventional imaging and spectroscopy to obtain both spatial and spectral information
from an object within a large field of view (FOV). Nowadays hyperspectral remote sensing
is a good technology for characterizing soil properties (Lagacherie et al. 2008; Gomez,
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Hyperspectral Copper Determination in Soil 1403

Viscarra Rossel, and McBratney 2008) but proximal imaging applications are still underde-
veloped. Among the hyperspectral techniques thus far examined in the laboratory, VIS-NIR
and NIR have been shown to have potential as rapid, nondestructive approaches for analy-
sis of several soil properties, including water, carbon, and macronutrient contents. One of
the first applications using NIR was developed to estimate soil fertility in terms of nitrogen
(N), phosphorus (P), and potassium (K) content (Gillon, Houssard, and Joffre 1999).

There is a particular interest in complementing current methodologies employed in
soil surveying using proximal sensing as an input for predictive soil mapping. Although
proximal sensing techniques tend to provide less accurate measurements than conventional
laboratory analysis, hyperspectral imaging facilitates the collection of larger amounts of
data using cheaper and less time-consuming methods and has the potential to reduce any
accuracy deficit. Developments should enable proximal soil sensors to improve the effi-
ciency of soil data collection and provide more information on soil spatial variation than is
achieved by conventional surveying where relatively few very accurate measurements are
performed (Viscarra Rossel and McBratney 1998b).

The objective of this research was to develop a hyperspectral imaging system for esti-
mating Cu concentration in agricultural polluted soils (>50 mg kg−1 Cu) as an alternative
to the standard chemical analyses and to evaluate the analytical accuracy of the system
using the VIS and NIR regions.

Materials and Methods

Soil Preparation

For this study, we used an agricultural soil from the experimental farm of the University of
Tuscia, located in Viterbo (central Italy). It is a conventionally managed soil in a random-
ized block design with three replicated plots of 108 m2. The soil is clay loam and classified
as Typic Xerofluvent (Lagomarsino et al. 2009). After removal of the litter layer, three soil
cores from each block were taken inside each plot at 20 cm deep and then pooled together.
Soil was pretreated by air drying, disaggregating, sieving to <2 mm, and crushing with a
planetary ball mill (RETSCH PM 100, RETSCH GmbH, Haan, Germany). The homoge-
nized soil was then divided into 20 accurately weighed samples of approximately similar
weights. The samples were then contaminated with Cu by adding 20 mL of copper sulfate
solution (CuSO4•5H2O) at concentrations ranging from 0 (control) to 1000 mg of Cu per
kg of soil. All samples were oven dried at 65 ◦C for 48 h to reduce moisture content to
around 6% prior to spectrophotometric analysis.

Spectrophotometer Analysis

Each of the 20 Cu-contaminated samples was poured into three borosilicate optical-glass
Petri dishes (Duraplan) to a depth of 1 cm. All 60 Petri dishes were placed on a black back-
ground, and the images were acquired for the hyperspectral analysis. The acquisitions were
repeated after 10 days and after 20 days. For each hyperspectral image, an operator selected
two regions of interest (ROIs) to measure the mean VIS-NIR and NIR spectral reflectance.
A total of 360 spectral measurements formed the dataset for subsequent analysis.

The imaging systems with VIS-NIR and NIR spectrophotometers (Figure 1) were
composed of four parts: (1) a sample transportation plate (spectral scanner DV, Padua,
Italy) (common to both systems); (2) a collimated illumination device (Fiber-lite,
Dolan-Jenner, Mass., USA) with a 150-W halogen lamp and an illumination opening
in the optical fiber measuring 200 mm long by 2 mm wide, positioned at 45◦ to the
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1404 F. Antonucci et al.

Figure 1. Spectral images acquisition system. 67 × 50 mm (300 × 300 DPI).

transportation plate for minimum light divergence (common to both systems); (3) an
imaging spectrographs (VIS-NIR: ImSpec V10; NIR: ImSpec N17, Specim Ltd, Oulu,
Finland) coupled with a standard C-mount zoom lens; and (4) digital camera [VIS-NIR:
Teli charge-coupled device (CCD) monochrome camera, Toshiba-Teli CS8310BC; NIR:
Pixelvision SU128 InGaAs IR camera]. The imaging spectrometers were used to acquire
images ranging from 400 to 970 nm and from 1000 to 1700 nm. The two spectrographs are
based on a patented prism-grating-prism (PGP) construction (a holographic transmission
grating). The incoming line image (frame) was projected and dispersed onto the two-
dimensional (2D) CCD. Each frame contained the line pixels in one dimension (spatial
axis) and the spectral pixels in the other dimension (spectral axis), providing full spectral
information for each line pixel. The reconstruction of the entire hyperspectral image of
the sample was performed by scanning the sample line by line as the transportation plate
moved it through the field of view. The resolution of the line image was 700 pixels by
10 bits for the VIS-NIR and 128 pixels by 12 bits for NIR. The system was operated in
a dark laboratory to minimize interference from ambient light. All spectral values were
expressed in terms of relative reflectance (R), following Eq. (1):

R = rs − rb

rw − rb
(1)

where R is the relative reflectance of the sample at a given wavelength; rs is the absolute
signal value (radiance) measured for the sample at the wavelength; rb is absolute signal
value (radiance) measured at each wavelength for the black background (noise); and rw

is absolute signal value (radiance) measured at the wavelength for a standard white back-
ground (100% of reflectance). The hyperspectral images of the soil samples were analyzed
using Spectral Scanner, v. 1.4.1 (DV Optics, Padua, Italy).

Chemometric Analysis

Mean reflectance for each polluted soil sample was related to Cu concentration by partial
least squares regressions (PLS). PLS is a soft-modelling method (Wold, Sjostrom, and
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Hyperspectral Copper Determination in Soil 1405

Erikssonn 2001) for constructing predictive models when the factors are many and highly
collinear (Menesatti et al. 2010). The predictive ability of the model is partially dependent
on the number of the latent vectors (LVs) used and was assessed by the statistical param-
eters root mean square error (RMSE), standard error of prevision (SEP), and correlation
coefficient (r) between observed and predicted values and by calculating the bias.

Finally, we recorded the ratio of percentage deviation (RPD), which is the ratio of
the standard deviation of the laboratory measured (reference) data to the RMSE (Williams
1987). It is the factor by which the prediction accuracy has been increased compared with
using the mean of the original data.

Generally, a good predictive model should have high values for r and low values for
RMSE and SEP. The model chosen was for the number of LVs that yielded the greatest r,
minimum SEP for predicted and known Cu concentrations, and maximum RPD. We classi-
fied RPD values as follows: RPD values <1.0 indicate very poor model and/or predictions
and their use is not recommended; RPD values between 1.0 and 1.4 indicate poor model
and/or predictions where only high and low values are distinguishable; RPD values
between 1.4 and 1.8 indicate fair model and/or predictions that may be used for assessment
and correlation; RPD values between 1.8 and 2.0 indicate good model and/or predic-
tions where quantitative predictions are possible; RPD values between 2.0 and 2.5 indicate
very good, quantitative model and/or predictions; and RPD values >2.5 indicate excellent
model and/or predictions (Viscarra Rossel et al. 2007).

The procedure for preparing the data for PLS analysis includes the following steps:
(1) extraction of a subset of the raw spectra data, to be used as X-block variables;
(2) X-block variables selection; (3) creation of concentrations values dataset to be used
as reference or response variable (Y variable); (4) data fusion of the two datasets (Y and
X-block) in one analysis dataset (AS); (5) SPXY (Harrop Galvao et al. 2005) separation
of the AS into two subsets, one (MS) for the model (70% of AS) and one (TS) for the
external validation test (30% of AS); (6) application of different preprocessing algorithms
to X-block and Y; (7) application of chemometric technique (PLS): modeling and testing;
and (8) calculation of efficiency parameter of prediction (RMSE, SEP r, and RPD both for
model and test subset).

To divide the dataset into MS and TS subsets, for multivariate PLS analysis, the
SPXY method (Harrop Galvao et al. 2005) was used. This method employs a par-
titioning algorithm that takes into account the variability in both X and Y spaces.
To obtain the best prediction test, different X and Y preprocessing techniques were applied
(Table 1).

Results

The VIS-NIR- and NIR-derived models that yielded maximum r and RPD (calculated to
RMSE of test subset) and minimum SEP for prediction of Cu concentration indicated good
predictive models could be constructed. For VIS-NIR r = 0.9180 in validation and calibra-
tion phase and r = 0.9319 for independent test was achieved using 11 LV and resulting in
a RPD = 2.7554 (Table 2, Figure 2). The model had low error value, s SEP = 108.35 and
RMSE = 107.90, when validated. For the X-block abs were required preprocesses. For
NIR, r = 0.7635 after validation and calibration and r = 0.7662 for independent test indi-
cated a less accurate model with a RPD = 1.5385 (Table 2, Figure 3). For the X block, mean
center followed by mean center weighting were required preprocesses, whereas for the Y
block, autoscale was used. The SEP and RMSE values were greater than those observed
for VIS-NIR models.
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1406 F. Antonucci et al.

Table 1
List of the different X and Y preprocessing techniques applied in the analysis

Label Description

None No preprocessing
Log 1/R Transformation of reflectance in absorbance following

log(1/R) formula
Diff1 Differences between adjacent variables (approximate

derivatives)
Log10 Log 10
Logdecay Log decay scaling
Baseline Baseline (weighted least squares)
Abs Takes the absolute value of the data
Autoscale Centers columns to zero mean and scales to unit variance
Detrend Remove a linear trend
GLS weighting Generalized least squares weighting
Groupscale Group/block scaling
Mean center Center columns to have zero mean
Msc (mean) Multiplicative scatter correction with offset, the mean is

the reference spectrum
Median center Center columns to have zero median
Normalize Normalization of the rows
Osc Orthogonal signal correction
Sg Savitsky–Golay smoothing and derivatives
Snv Standard normal deviate
Centering Multiway center
Scaling Multiway scale
Sqmnsc Scale each variable by the square root of its mean

Discussion

Soil is a complex, dynamic, living, natural entity and has complex interactions among
physical, chemical, and biological factors (Doran and Safley 1997). Copper is strongly
held by the soil, which means low leaching, especially with a dependence upon pH. These
applications may lead to gradual accumulation of Cu in the soil and thereby increase
Cu toxicity toward crops and beneficial microorganisms. Soil quality criteria and legisla-
tion on Cu levels in soils generally rely on data for total Cu content based on chemical
analysis. Copper-based fungicides have been intensively used in Europe since the end
of the 19th century to control vine fungal diseases, such as downy mildew caused by
Plasmopara viticola (Komárek et al. 2010). In this experiment the soil and environmental
conditions were controlled with extensive pretreatment. In fact, soil samples were finely
fragmented to the size of mash to avoid gradients in the surface scan. Soil samples were
brought to constant moisture. Indeed, water molecule presents, in the IR region, the res-
onance frequencies due to the presence of molecular functional group O-H. Under these
conditions, the VIS-NIR hyperspectral imaging system offered better prediction of Cu con-
centration than the NIR system. Although both spectrophotometers, coupled with PLS
data analysis, permitted rapid estimation of Cu concentration, the VIS-NIR was prefer-
able. The extensive pretreatment required raises the question of whether the system would
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Hyperspectral Copper Determination in Soil 1407

Table 2
Results of Partial Least Squares (PLS) multivariate analysis predicting the copper

concentration in soil samples from spectral reflectance analysis. In the table are reported:
number of Latent Vectors (LV), correlation coefficient (r), Ratio of Percentage Deviation

(RPD), Standard Error of Prediction (SEP) and Root Mean Squares Error (RMSE)

Parameters VIS-NIR NIR

MODEL (70%)
N◦ LV 11 8
First pre-processing X-Block mean center
Second pre-processing X-Block abs
Pre-processing Y-Block autoscale
r (observed vs predicted) 0.9180 0.7635
RPD 2.5218 1.5484
SEP 112.54 187.45
RMSE 112.31 187.08

TEST (30%)
r (observed vs predicted) 0.9319 0.7662
RPD 2.7554 1.5385
SEP 108.35 184.43
RMSE 107.90 184.41

Figure 2. Correlation between measured and predicted values of copper in the test-set observed for
the visible-near infrared (VIS-NIR) spectral analysis (i.e., 30% of whole sample dataset).
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1408 F. Antonucci et al.

Figure 3. Correlation between measured and predicted values of copper in the test-set observed for
the near infrared (NIR) spectral analysis (i.e., 30% of whole sample dataset).

be suitable for precision agriculture because reducing pretreatment would surely reduce
analytical accuracy (Alchanatis, Schmilovitch, and Meron 2005). However, acquiring more
detailed information capturing spatial and temporal differences is clearly possible and
should be cost-effective when compared to standard chemical analysis. The results indicate
that VIS-NIR hyperspectral imaging has the potential to be developed, through appropri-
ate engineering design, into a tool for optimized soil and land management, perhaps in
conjunction with plant-sensing systems as developed by Menesatti et al. (2010).

Also variations due to moisture content, stones, soil peds, and heterogeneous distribu-
tion of soil material was eliminated by sample pretreatment, a necessary first step in system
development (Bricklemyer and Brown 2010), the results indicate that the methodology has
potential, given that the same spectra have the potential to be used to predict these soil char-
acteristics (Bonifazzi, Menesatti, and Millozza 2004; Bonifazi et al. 2005), and thus there
is scope to establish low-cost proximal hyperspectral imaging systems for precision agri-
culture, reclamation, and similar land and soil management. This is particularly important
because aerial and satellite remote sensing, which provide an excellent means of determin-
ing variability of soil properties at the landscape scale, is limited by cloud cover and the
low spatial resolution. A field-based proximal hyperspectral imaging system would over-
come these issues and represents an exciting new frontier for soil research. Even if such
systems are less accurate than conventional soil analysis techniques, proximal sensors will
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Hyperspectral Copper Determination in Soil 1409

facilitate the collection of larger amounts of spatial and temporal data because they are less
costly, require less time (Viscarra Rossel and McBratney 1998b), and can build data set of
multiple properties with the same sample support that will facilitate understanding of soil
system processes.

Conclusions

The objective of this research was to develop a hyperspectral proximal imaging system for
sensing of Cu in agricultural polluted soils (concentrations >50 mg kg−1 Cu). It was found
that the VIS-NIR detector provided data that could produce the most accurate PLS predic-
tion model for pretreated soils. The initial application of the system will be to investigate
heavy-metal speciation and interactions with other soil properties to address practical prob-
lems for soil remediation, soil survey, and precision agriculture sampling. The benefit of
the system will be reduced analysis costs, thus permitting increased spatial and temporal
resolution for measurement of soil properties.
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