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INTRODUCTION: Reducing the environmental
footprint of agriculture while maintaining or im-
proving yields is a major challenge of the coming
decades. Organic agriculture is often suggested
as a means to improve agricultural sustainabil-
ity through more natural production methods,
particularly in regards to pesticides and pest
control. However, the environmental impacts of
organic production practices are only partially
understood and it remains unknown whether
such production practices have spillover impacts,
beneficial or not, for surrounding producers.

RATIONALE: Organic crop production includes
a suite of on-farm practices that differ from
conventional management techniques. These
practices include using different pest manage-
ment approaches, which may result in the spill-
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over of agricultural pests and/or their natural
enemies to nearby agricultural fields resulting
in higher or lower pest damage and pesticide
use. Here we seek to identify the direct and
spillover effects of surrounding organic crop-
land on pesticide use on both organic and con-
ventional crop fields. To do so, we used field-level
pesticide use and crop data for ~14,000 fields
over seven years in Kern County, California,
alongside US-wide data on organic agriculture
and pesticide use.

RESULTS: We find that the presence of surround-
ing organic cropland generally leads to a de-
crease in pesticide use on organic fields, which
appears mostly driven by a reduction in in-
secticides. By contrast, surrounding organic
agriculture leads to a small but significant in-

Based on these results, we simulate how chi...
ing the proportion of organic cropland changes
net insecticide use. While net insecticide use de-
creases at high levels of organic cropland, at
commonly observed levels net insecticide use
increases due to the positive (insecticide increasing)
effects of surrounding organic cropland on con-
ventional fields. This effect can be entirely miti-
gated by clustering organic cropland. A coarser,
national-scale analysis further evidences the
inverted U-shape relationship between organic
cropland area and net insecticide use.

CONCLUSION: These results suggest that efforts
to increase organic cropland could lead to a de-
crease in pesticide use, but that is more likely at
higher levels of organic cropland in the landscape.
At low levels of organic cropland, the opposite is
expected. Spatially clustering organic fields and
spatially separating organic and conventional
fields could reduce the environmental footprint
of both organic and conventional croplands.
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Increases in sur-
rounding organic
cropland leads to a
rise in pesticide use

on conventional fields

Organic focal field
and a decrease on

organic fields. We
hypothesize this is due
‘ to a spillover of both
! pests and natural
enemies from organic
fields, with conventional
focal fields increasing

Conventional focal field and organic focal fields

decreasing pesticide
use due to different
reliance on and abun-
dance of natural enemies
of agricultural pests.

Populatlons of pests and natural
enemies are larger in organic fields
compared to conventional fields.
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Spillover effects of organic agriculture
on pesticide use on nearby fields

Ashley E. Larsen'*, Frederik Noack?, L. Claire Powers®

The environmental impacts of organic agriculture are only partially understood and whether such
practices have spillover effects on pests or pest control activity in nearby fields remains unknown. Using
about 14,000 field observations per year from 2013 to 2019 in Kern County, California, we postulate that
organic crop producers benefit from surrounding organic fields decreasing overall pesticide use and,
specifically, pesticides targeting insect pests. Conventional fields, by contrast, tend to increase pesticide
use as the area of surrounding organic production increases. Our simulation suggests that spatially clustering
organic cropland can entirely mitigate spillover effects that lead to an increase in net pesticide use.

ncreasing yields while reducing the envi-

ronmental footprint of crop production is

a major challenge of the 21st century. Or-

ganic agriculture is one potential solution

widely recognized by consumers and pol-
icy makers. Although organic production cov-
ers less than 2% of global agricultural lands, it
has grown from 15 million ha in 2000 to over
73 million ha today (I-3). Continental policy
initiatives, such as the European Union’s Farm
to Fork strategy, as well as regional targets such
as the California Air Resource Board (CARB) scop-
ing plan for achieving carbon neutrality (4)
portend a further and more substantial in-
crease in organic production (5). However, the
benefits and drawbacks of organic agriculture
remain a topic of active research. Although or-
ganic production generally improves environ-
mental conditions such as soil and water quality
(1, 6-8), these improvements often come with
a substantial yield tradeoft (9, 10), which makes
the overall environmental impact of organic
production ambiguous or at least context-
dependent (77). The focus of comparison thus
far has been at the field level. However, field-
level changes in management also determine
the composition and configuration of agricul-
tural landscapes, which in turn influence the
persistence, richness, and abundance of many
taxa (12-14) including both beneficial and pest
organisms (I5-17) and associated pesticide use
(18, 19). Because on-farm decisions may influ-
ence pests and natural enemies of pests beyond
the farm gate, the net environmental impacts
of organic crop production necessarily include
if and how pests and their predators spill over
to affect pest control on other fields and farms
in the landscape.
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The vast majority of the most persistent and
environmentally concerning pesticides such
as organophosphates and organochlorines are
banned in organic agriculture, as are many
widely used herbicides and genetically modi-
fied seeds (20). As such, organic fields, even if
they do use pesticides (21), may host a different
suite of species in different relative abundances
than conventionally managed fields (22, 23).
For example, organic agriculture may harbor
more beneficial organisms such as natural ene-
mies that control pests (e.g., birds, spiders, par-
asitoids, predatory beetles; hereafter natural
enemies) (24) due to a reduction in persistent
and broad-spectrum pesticide use (25). Alter-
natively, although not mutually exclusive, the
reduced reliance on chemical pest control in
organic agriculture could result in organic fields
having higher levels of pests that spill over to
other fields (25). Bianchi et al. (25) illustrate
theoretically that these two counteracting ef-
fects of organic agriculture can lead to a lose-
lose situation as pesticide use on conventional
agriculture reduces natural enemy control on
organic fields, leading to increased pest spillover
onto conventional fields. However, Bianchi et al.
(25) also show that if organic fields are spatially
clustered, natural enemies of pests persist and
pest spillover is reduced. This mechanism
suggests that conventional and organic fields
may have opposite responses to increasing or-
ganic agriculture in their surroundings, and
such a mechanism, driven by the interaction of
pesticides, pests, and natural enemies, may in-
duce producers to cluster organic fields in space.

Ecology, however, is not the only mechanism
(26). In the economics literature, scholars
show that landowners reduce their pest eradi-
cation efforts in response to reduced pest erad-
ication efforts by their neighbors (27). This
race to the bottom is caused by pest spillover
that reduces the ability of the farmer to
control the pests on their land and therefore
discourages control efforts in response to

increased pest spillover. In other words, if pest
propagules are constantly spilling over from
the landscape, the focal farmer may spray
pesticides to kill their pests but the high level
of pest immigration reduces the benefits of
doing so. In addition to economic and ecological
feedbacks, farmers may simply learn from their
neighbors and reduce their pesticide use in
response to the reduction of pesticide use on
neighboring farms (28, 29). These economic
and behavioral mechanisms suggest that both
conventional and organic fields may decrease
pesticide use in response to increasing organic
agriculture. We evaluate the different predic-
tions generated by these ecological, economic,
and behavioral theories.

If growers receive a net pest control benefit
from surrounding organic fields via natural
enemy spillover, for example, the benefit of or-
ganic production in reducing environmental
pollution has thus far been understated. On
the other hand, if growers experience a net pest
control cost from surrounding organic fields
in response to pest spillover, for example, the
benefits of organic production for the environ-
ment are diminished. Lastly, if organic fields
in the landscape have differential impacts based
on whether the receiving field is organic or con-
ventional, then important policy opportunities
arise related to targets for organic agriculture
and for incentivizing spatial coordination of
organic production within and between farms.

We seek to understand how surrounding
organic crop production influences pesticide
use on organic and conventional fields. We ad-
dress the following questions: (i) How does
surrounding organic agriculture affect pesti-
cide use on other fields? (ii) Is this effect dif-
ferent for conventional versus organic focal
fields? (iii) Which type of pesticide is most
influenced by organic agriculture and does
this differ between organic and conventional
fields? We focus on Kern County, CA, one of
the leading crop-producing and pesticide-
employing counties in the US, with over $7.4B
in annual agricultural production and over
13 million kg of pesticide active ingredients
application in 2018, reflecting the produc-
tion of many high-value crops such as almonds,
grapes, lettuce, and carrots (30, 31). We analyze
field-level crop and pesticide use data for about
7300 organic and 91,000 conventional field-
year observations representing about 14,000
permitted fields each year between 2013 and
2019. We rely on a series of panel data models
that leverage the spatial and temporal varia-
tion of agricultural composition to estimate
the effect of surrounding organic cropland,
after controlling for other local and landscape
factors and heterogeneity in pest control behav-
ior specific to year, region, crop type, and farmer.
Based on our results, we then simulate how
net pesticide use changes as a function of the
amount of organic agriculture in the landscape
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and evaluate whether the general trends ob-
served in Kern County hold at the national scale.

Results
Empirical analysis in Kern County, CA

We identified certified organic crop fields based
on both state registration and 3 years of organic-
approved pesticide use. We report that about
75% of permitted fields and about 5.5%
of permitted area in 2019—accounting for
multicropped fields—were organic, with organic
cropland distributed across much of the agri-
cultural region in Kern County, CA, though these
areas were often clustered (Fig. 1). Although
both organic and conventional fields had sub-
stantial surrounding cropland, organic cropland
generally had a much larger fraction of sur-
rounding organic cropland and a greater amount
of surrounding cropland owned by the same
farmer. Organic fields were generally smaller
in size and in regions of greater crop hetero-
geneity (Table 1).

In our first analysis, we sought to identify
whether surrounding organic cropland leads
to an increase or decrease in pesticide use rates
(kg per ha) on organic and conventional focal
fields, where “surrounding” is defined as a
circular area with a 2.5 km radius (1963 ha)
around the focal field, following prior litera-

ture (16, 32). All models also include covariates
for the amount of total cropland (cropland ex-
tent), field size (hectares), and percent of sur-
rounding cropland managed by the focal
farmer (share own). Organic fields and pesti-
cide use are not randomly distributed and
may be co-determined by location and time-
specific characteristics such as soil quality or
policies, weather, and demand shocks. Similarly,
knowledge spillovers or economies of scale—e.g.,
through shared infrastructure or supply chains—
can create distinct clusters of similar agricultural
practices within the landscape (28, 29, 33, 34).
We therefore control for region and year het-
erogeneity with region, defined as the public
land survey (PLS) Township, which is roughly
93 km?, and year dummy variables, or fixed
effects in causal inference terminology (table
S1). Thus, the coefficients in our baseline spe-
cification are identified using only deviations
in pesticide use rates and amount of organic
agriculture from the local average, after remov-
ing temporal fluctuation shared by all observa-
tions in the study region. Additionally, organic
farmers may have different approaches to
agriculture or plant different crops with dif-
ferent pesticide use patterns. We therefore also
control for crop type and farmer, again using a
series of dummy variables.
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Fig. 1. Percent of Kern County Public Land Survey (PLS) sections occupied by cropland and organic
cropland in 2019. PLS sections (~2.6 km? regions) containing any cropland (A) or organic cropland (B) are
indicated by black outlines. PLS sections containing cropland but no organic cropland are indicated by gray
shading in (B). In both panels, darker colors indicate a higher percentage.
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Across specifications, we inverse hyperbolic
sine (IHS)-transform dependent and indepen-
dent variables [see statistical approach (35)]
and include standard errors clustered at the
farmer level to account for the correlation be-
tween farmer and organic treatment (36). We
focus on the results of our most stringent mod-
el specification, which includes year, region,
crop type, and farmer dummy variables. Pool-
ing all fields, we find that the amount of sur-
rounding organic cropland results in a small
but significant positive effect on total pesticide
use rates, defined as kg per ha of active ingre-
dients (AI) (Fig. 2, fig. S1, and table S2). Here
and throughout, significance is based on a
two-tailed ¢ test. Running analyses separately
for organic and conventional fields, which al-
lows organic and conventional focal fields to
have different responses to all covariates, we
see that surrounding organic agriculture leads
to a small but significant increase in pesticide
use rates on conventional focal fields, reflect-
ing the pooled model. We observe that a 10%
increase in surrounding organic cropland area
leads to a 0.3% increase in total pesticide use
on conventional focal fields in our most strin-
gent model. Throughout this study, we interpret
the coefficients of IHS-transformed variables
as elasticities that approximate percentage
changes similar to coefficients of log trans-
formed variables. By contrast, the same 10% in-
crease in surrounding organic cropland leads
to a 3% decrease in total pesticide use on or-
ganic focal fields (Fig. 2 and table S2).

The term “pesticides” encompasses a broad
range of pest control products that target very
different pest taxa that may respond different-
ly to surrounding organic cropland. We thus
split total pesticides into target taxa-specific
categories: insecticides (further divided into
insecticides only and insecticide/fungicide dual
action chemicals, such as sulfur), fungicides
only, and herbicides only. Of the taxa-specific
categories, we focus on insecticides through-
out as it is the most common type of pesticide
applied in this region (Table 1), and also be-
cause insect pests are mobile and thought to
be responsive to landscape characteristics. We
see that the all-pesticide result primarily
reflects chemicals targeting exclusively insect
pests or both insect pests and molds (Fig. 2
and tables S2 and S3). We see that a 10%
increase in surrounding organic cropland leads
to a 0.3% increase in insecticide use rates (kg
per ha) for conventional focal fields, and a
decrease of 2% for organic focal fields. By con-
trast, we see little effect of surrounding organic
cropland on herbicide or fungicide use rates
on organic fields (Fig. 2 and table S3).

Organic cropland could influence pest and
natural enemy abundance at either the local
scale, the landscape scale, or some combination
of the two. To flexibly model the effect of sur-
rounding organic cropland over space, we
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Table 1. Summary statistics (mean, standard deviation in parentheses) for conventional and
organic fields. Cropland Extent, Surrounding Organic, Same Crop, and Same Owner are measured as
area (hectares) within a 2.5-km buffer (1963 ha area) around the focal field centroid. These variables can
exceed 1963 ha due to crop rotations. Permitted field size, pesticide use rates, and landscape
characteristics are adjusted for multicropping (see Methods, Supplementary Methods).

Conventional Organic
Field Size (ha) 3174 18.99
(33.78) (14.82)
Cropland Extent (ha) 1748.37 1977.50
(601.8) (818.7)
Surrounding Organic (ha) 71.88 837.09
(223.1) (608.2)
Same Owner (ha) 434.47 720.84
(443.7) (594.9)
Same Crop (ha) 444,38 166.09
(407.4) (246.4)
Crop Diversity 0.70 0.85
(0.183) (0.107)
All Pesticide Al (kg per ha) 26.65 8.61
(82.73) (26.34)
All Insecticide Al (kg per ha) 18.43 7.29
(68.43) (24.27)
N 91,155 7352
154 All Fields
0 # ++ i +¢ 4 +¢
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% 154 Conventional
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Fig. 2. Effects of surrounding organic cropland on aggregate and separate types of pesticide use on
conventional (Conventional) and organic (Organic) focal fields for models with a combination of

PLS Township (T), Year (Y), Crop (C), and Farmer (F) dummy variables. The y-axis, which differs for
organic versus conventional and all, is pesticide elasticity, or the percent change in a given type of pesticide
use (kilograms per hectare) for a 1% change in the area of surrounding organic cropland. The x-axis indicates
different pesticide types: all pesticide active ingredients (All); all pesticides that target insect pests (All
Insect); pesticides that only target insect pests (Insect); pesticides with dual action for insect pests and
molds (Ins/Fung); pesticides that only target molds (Fung); and pesticides that only target weeds (Herb). The
horizontal line indicates zero. The most stringent and therefore preferred model is indicated in blue. The
symbol indicates the slope coefficient and the bars indicate the 95% confidence interval (Cl) using standard
errors clustered at the farmer ID to account for autocorrelation of the errors of fields within the same
farm. Tables with the coefficient and standard error estimates, number of observations, and other covariates
are in the SM (tables S2 and S3).
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analyzed the amount of organic cropland in
each of five concentric annuli with 500-m
width from the focal field out to the 2.5-km
boundary. Rather than including one covar-
iate for surrounding organic cropland, as pre-
viously, we now have five. This enables
organic cropland to have a different relation-
ship at different distances from the focal field.
We focus exclusively on organic focal fields
because few conventional fields have organic
agriculture in the immediate surroundings.
Again, using the panel data model with region,
year, crop, and farmer dummy variables and
including covariates for focal field size, crop-
land extent, and share own, we see a large local
effect of organic agriculture on organic fields,
but also a smaller landscape effect extending
out to 2500 m. The largest magnitude of the
effect is in the first annuli, defined as a circular
buffer of 0 to 500 m from the centroid of the
focal field. For organic focal fields, a 10% in-
crease in organic cropland area in the first
annuli leads to about a ~2% decrease in total
pesticide use rate. The magnitude of the rela-
tionship is reduced substantially in the second
annuli (500- to 1000-m buffer) and beyond,
though it remains significant or marginally
significant (Fig. 3 and table S4). We see a sim-
ilar response for insecticides, mostly driven
by dual action insecticide/fungicide chemicals
(Fig. 3, table S4, and fig. S2).

We conducted several robustness tests re-
lated to calculations of surrounding organic
cropland (tables S5 and S6, and fig. S3), model
specification (figs. S4 to S8 and tables S7 to
S9), and alternative measures of pesticide use
(pesticide products, area treated, net applied
toxicity) [Parker et al. (37)] (tables S10 and
S11). We also evaluated whether organic and
neighboring fields have similar pesticide dy-
namics to conventional fields before becom-
ing organic using an event study (figs. S9
and S10; Supplementary Methods). Our panel
data coefficient estimates were generally robust
to different definitions of organic, model spe-
cifications, and measures of pesticide use. The
event study shows that all fields have similar
patterns of pesticide use prior to the adoption
of organic practices, when fields that will be-
come organic start to diverge from the general
pattern of pesticide use on conventional fields.
Further, our event study finding that conven-
tional focal fields increase pesticide use in re-
sponse to reduced pesticide use on surrounding
organic fields only after surrounding fields
become organic strengthens the interpretation
of our estimated effect as causal.

Simulation analysis

Building on our empirical model, we simulated
the effect of organic agriculture on insecticide
use (see simulation methods). We find that the
mixed effect of spillovers from organic agricul-
ture onto neighboring agricultural fields creates
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Fig. 3. The effects of organic cropland at different distances from organic focal fields for total pesticide
and insecticide active ingredients. Closed circles indicate all pesticide use (kilograms per hectare), open
circles indicate all insecticide use, and two subcategories of insecticides are also included. The y-axis is pesticide
elasticity, or the percent change in pesticide use rate for a 1% change in the area of surrounding organic
cropland. The x-axis indicates the coefficient for the impact of organic cropland in different annuli of 500 m
width from the focal field. All models include region (PLS Township), year, crop, and farmer dummy variables.
The symbol indicates the slope coefficient and the bars indicate the 95% Cl using standard errors clustered

on farmer ID. Tables with the coefficient and standard error estimates, number of observations, and other
covariates are in the SM (table S4).
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Fig. 4. Simulation of the impact of organic agriculture on total insecticide use based on 2000 random draws
from the joint normal parameter distribution of specification T,Y,C,F-Int reported in fig. SL The outcomes are
expressed in IHS-transformed insecticide use relative to “baseline” insecticide use of 100% conventional agriculture.
The thick lines are the mean simulated outcomes. The blue lines (Dispersed) assume an equal spatial distribution

of organic agriculture and includes the spillovers of organic agriculture on neighboring fields. The initial increase in total
insecticide use is caused by the positive spillovers of organic agriculture on conventional fields that overcompensates the
reduction of insecticides on the focal and neighboring organic fields. The red lines (Clustered) assume spatially
concentrated organic agriculture such that there are only spillovers of organic fields on organic fields. The dashed gray
line shows the 2019 level of organic agricultural area in Kern County. The dotted black line shows the CARB target
for organic agriculture. To back transform to approximate the level of pesticides, use sinh(IHS(prediction) * IHS(mean
insecticide use on conventional fields with no surrounding organic agriculture)/100) (54).
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a nonlinear relationship between the share of
organic agriculture in the landscape and total
insecticide use. In landscapes with high levels
of organic agriculture, insecticide use decreases
regardless. However, at low levels of organic
cropland dispersed across the landscape, the
increased insecticide use due to spillovers (pos-
sibly of pests) from organic fields onto conven-
tional fields overwhelm the decreased insecticide
use due to the direct effects of organic agri-
culture plus the spillovers onto organic fields
(Fig. 4). This increase in overall insecticide use
in response to increases in organic agriculture
at low levels of the latter is completely miti-
gated if organic fields are spatially concen-
trated (clustered). This spatial concentration
reduces insecticide-increasing spillovers on
conventional fields. The current area of organic
cropland in Kern County is ~5.5% of total crop-
land, below the level at which organic agricul-
ture reduces insecticide use at the landscape
level compared with no organic agriculture,
were the organic fields in Kern County dis-
persed (Fig. 1). The European Union’s Farm to
Fork target for organic agriculture (25%) and
the CARB target (20%) are above that thresh-
old at which overall insecticide use declines.
The simulation results suggest that the benefits
of organic agriculture, with respect to spillovers,
materialize at higher levels of conversion to
organic agriculture, or if organic agriculture
is spatially concentrated, to increase the nega-
tive (pesticide-decreasing) spillovers of organic
agriculture on pesticide use on neighboring
organic fields.

National model

We evaluated the external validity of our re-
sults and simulation using national-scale data
from the Census of Agriculture (see Nation-
wide Extension). Although we cannot distin-
guish pesticide use on conventional and organic
fields at the national scale, we can test whether
pesticide use increases initially and then de-
clines in response to an increasing area under
organic agriculture, as predicted by our simu-
lation results. To do so, we first calculate or-
ganic land at the county-year level using
information on the number of organic farms
and average farm size. We use data on areas
treated with insecticides and herbicides from
the bi-decadal USDA Census of Agriculture
from 1997 to 2017 as outcome variables. We
then estimate how insecticide (or herbicide)
use changes as a function of both the linear
and the square of organic agricultural area,
while controlling for other covariates and
including county and year dummy variables.
As previously stated, we IHS-transform both
our outcome and predictor variables. The esti-
mated coefficients are positive for the linear
term and negative for the squared term, sug-
gesting an initial increase of pesticide use and
a subsequent decline of pesticide use with
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increasing levels of organic agriculture. The
national results therefore reinforce our finding
from Kern County, where pesticides increase
at low levels of organic agriculture and then
decline at higher levels, and that this impact
is more pronounced for insecticides than for
herbicides (Fig. 5 and tables S12 to S14). We
visualize this nonlinear relationship in fig. S11.
In arobustness test, we use data from the USGS
Pesticide National Synthesis Project. The re-
sults are qualitatively similar.

Discussion

Crop pests respond to both local and land-
scape characteristics. Although much research
has focused on how local and landscape fea-
tures such as field size, the extent of cropland
or the abundance of (semi) natural habitat in-
fluences pest burdens (I6), natural enemy abun-
dance (15, 16), and insecticide use (38), there
have been comparatively few studies that in-
vestigate whether organic fields function as
a source of pests, a source of natural enemies,
both, or neither.

Although organic-approved pesticides are
not necessarily less toxic to environmental end-
points such as fish (39), theory suggests that
differences in pest management on analogous
organic and conventional fields may change
the way pests and natural enemies accumulate
both at local and landscape scales (25). We
find that surrounding organic agriculture drives
a small but significant increase in pesticide
use on conventional fields while leading to a
larger and also significant or marginally sig-
nificant decrease in pesticide use on organic
fields. Our simulation predicts the net change

Pesticide elasticity
© o o
N BN [e>)

o
o
1

| o =~

Organic Organic squared

® |Insecticides 4 Herbicides

Fig. 5. National-scale analysis illustrating the
nonlinear relationship between the amount of
organic cropland and pesticide use. The y-axis is
pesticide elasticity, or the percent change in total
pesticide use rate for a 1% change in the area of
organic cropland. The x-axis indicates the coefficient
for the level term (organic) and the squared

term (organic squared) and the symbols indicate
insecticides (blue circle) and herbicides (gray
triangle), as well as the 95% Cl with standard errors
clustered at the county and year level. All models
include county and year dummy variables.
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in IHS-transformed insecticides at different
amounts of organic cropland for scenarios with
dispersed and clustered organic fields. Trans-
forming the IHS predictions back to approx-
imate the levels of insecticide use, we see
changing from a baseline of 0% to 5% organic
cropland results in an increase in insecticide
use to 109% of the baseline, if organic fields
are dispersed. At 20% organic cropland, in-
secticide use decreases to 83% of baseline use.
If organic fields are clustered, however, the same
changes would result in 90% and 64% of
baseline insecticide use for 5% and 20%
organic cropland, respectively. Given that
over 7 M kg of insecticide active ingredients
were applied in Kern in 2019, the difference
between clustered and dispersed organic agri-
culture therefore represents sizable differences
in the amount of insecticides that would be
applied annually.

The contrasting sign of the relationship for
organic and conventional focal fields suggests
that organic fields harbor higher levels of both
insect pests and natural enemies, as suggested
by prior meta analyses (22), that spill over to
affect other fields. Conventional focal fields
may realize more of the negative effects, either
due to lower treatment thresholds or due to
reduced persistence of natural enemies in con-
ventional fields, as predicted by theory (25). By
contrast, organic fields may realize a benefit of
surrounding organic cropland because a land-
scape of reduced synthetic pesticides may en-
able more effective control by natural enemies
(22, 23, 25).

In line with conceptual understanding and
empirical agroecological research, we find
that surrounding organic cropland primarily
influences insect pest control. Decades of re-
search suggest that insect pests and natural
enemies are influenced by local and landscape
composition and configuration (75, 40). Further,
insecticides are the most widely used types
of pesticide in California’s high-value agricul-
ture (30) and herbicides are rarely used for
organic fields in this system. Thus, although
local and landscape features, including sur-
rounding organic fields, could influence weeds
and herbicide use in other systems and our
national-scale robustness test suggests it may,
it is not wholly surprising that little effect is
observed here.

Focusing on organic fields, we find that
the influence of surrounding organic fields is
greatest for fields within 0.5 km of the focal
field, which are primarily immediately adja-
cent fields or other crops in multicrop fields.
This large local benefit of clustering may help
explain why organic fields tend to be part of
larger farms (21) and are much more common-
ly multicropped fields. However, there remains
a benefit of surrounding organic agriculture at
distances between 1 to 2.5 km from an organic
field for some pesticides, suggesting there is

also a landscape-level effect of organic agricul-
ture on net pests and pest control. As farmers
and policy makers consider how to increase
organic production, leveraging the pest con-
trol benefits of clustered organic production
may generate more viable organic and con-
ventional agriculture with less environmental
pollution stemming from pesticide use. This
benefit of clustering, our simulation suggests,
remains sizeable even if organic agriculture
reaches 25% of cropland. Thus, it may be val-
uable to incentivize local clustering of organic
fields to reduce pesticide use on both organ-
ic and conventional farms, regardless of or-
ganic targets.

We have suggested that the mechanism un-
derlying our results is the influence of primarily
insect pests and/or natural enemy populations
spilling over from organic fields. However, we
lack data on pest abundance or damage and
thus are using pesticide amounts as an imper-
fect proxy. There are, of course, many aspects
that drive farmer pesticide use decisions be-
yond pests themselves. Characteristics such
as crop value (41), pest susceptibility (42), and
farmer risk preferences (43-45) explain most
of the variation in pesticide use. Our goal was
to isolate the spillover effect, if any, of sur-
rounding organic cropland on different types
of pesticide use on other fields rather than to
explain the greatest variation in pesticide use.
As such, we sought to remove these influences
through a series of dummy variables in a least-
squares dummy variable approach. We are
suggesting that the variation in pesticide use
that remains after removing region, year, farm-
er, and crop characteristics is reflective of pest
pressure. Field studies that measure pest and/or
natural enemy abundance in and near organic
fields would be extremely useful to evaluate
the plausibility of our suggested mechanism.
There are additional caveats to our work. For
one, we lack information on many other as-
pects of production such as yields and profits
and thus are unable to evaluate potential trade-
offs between different policy goals. Addition-
ally, Kern County is just one county and grows
alarger diversity of high value crops than most
of the agricultural regions in the US or glob-
ally. Pesticide use data is not available at the
field-level outside of California which makes
both isolating organic fields and elucidating
the effect of surrounding organic fields on pes-
ticide use extremely difficult. We expect the
magnitude of effects will depend on the mo-
bility and pesticide response of the pest/natural
enemy community (25), which is likely to be
crop-specific and any given crop may or may
not reflect the average effect observed here
(38, 41, 46). However, our national-scale ro-
bustness test suggests that the overall rela-
tionships observed in Kern persist elsewhere
despite differences in crop composition and
climate.
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Methods and Materials

Data

Pesticides data

We obtained field-by-day pesticide use re-
ports for Kern County for 2013 to 2019 from the
California Department of Pesticide Regulation.
The pesticide use report data include infor-
mation on permit (farmer), site, pesticide active
ingredients used, amount used, and date ap-
plied, among other information. These data
are from state-mandated pesticide use reports
submitted to the County Agricultural Commis-
sioner following pesticide use on production
agriculture. Using the California Department
of Pesticide Regulation (CDPR) Product Data-
base, we then classified pesticides as insecti-
cides (insecticides, insect growth regulators,
miticides, repellents), herbicides, or fungicides.
We split total pesticides into target-taxa spe-
cific categories: insecticides, further divided
into insecticide only and insecticide/fungicide
dual action chemicals (e.g., sulfur), fungicides
only, and herbicides only. We focus on insec-
ticides throughout because it is the most com-
mon type of pesticide applied in this region
(Table 1) and because insect pests are thought
to be responsive to landscape characteristics.
There are additional, less commonly used
types of pesticides such as rodenticides that
are incorporated into the all pesticide cat-
egory, but not investigated separately. We
rely on target taxa rather than toxicity be-
cause (i) we are primarily interested in how
organic agriculture impacts different pest
taxa, proxied by pest control type, (ii) toxic-
ity is specific to the environmental end point
of interest (e.g., fish, mammals, birds), and
(iii) toxicity information for all products in
use in California is not readily available for
any, let alone most, environmental endpoints
and is particularly sparse for organic-approved
products (2I). See Supplementary Methods
and tables S10 and S11 for additional robust-
ness tests.

Fields data

We downloaded the Kern County agricultural
fields shapefiles for 2013 to 2019 from the
County Agriculture and Measurement Stan-
dards website (kernag.com). These data in-
clude information on farmer, site, date active,
and commodity, among other information. A
field is a unique farmer-site-crop-year combi-
nation and thus field IDs change when crops
are rotated. Linking the field and pesticide
use reports, we summed pesticide use over
the duration of the crop’s growing season and
divided it by area permitted to create pesticide
use rates (kilograms per hectare). Field poly-
gons that did not have pesticide use records
for a given type of pesticides were given a zero
for that pesticide use rate.

Multi-crop fields are those with multiple
crop types grown simultaneously. Although each
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crop on a multi-crop field is given a unique ID,
which associates with the pesticide use data,
the area for each crop is not delineated sepa-
rately. We determined the number of crops by
calculating the number of observations that
had the same location, farmer ID and date
active. For fields that are multi-cropped, we
divided permitted area by the number of crops
to more accurately calculate pesticide use rates,
as well as surrounding agricultural extent and
surrounding organic agriculture (Supplemen-
tary Methods).

To avoid counting any potential permit mod-
ifications as separate fields, we maintained
one observation with the same geometry, com-
modity, year and permit if the commodity
was a perennial or if it was an annual crop
with an implausibly short growing season (<
30 days) taking the maximum area and
duration of cultivation for calculating spatial
overlap variables and taking the sum of pes-
ticide use and the maximum of other covariates
for focal fields. We further ran robustness tests
removing all overlapping fields of the same
commodity (Supplementary Methods).

Organic designation

We built on methods for identifying organic
fields described in Larsen et al. 2021 (21). In brief,
we obtained a list of organic crop producers by
permit-site, Assessor’s Parcel Number (APN)
and/or Public Land Survey (PLS) Section for
2013 to 2019 through a public records request
to the California Department of Food and Ag-
riculture (CDFA). We first matched on permit-
site ID and year, if provided, as that directly
links to a specific polygon. For the majority
that did not include permit-site ID we inter-
sected field polygons from Kern County and
within the APN and/or PLS Section to determine
which APN or PLS Section contained organic
producers. This resulted in 3410 of 4881 unique
records matching a field, PLS Section or APN
and corresponded to over 12,000 crop fields.
However, not all fields in an APN or PLS Sec-
tion are organic. As such, we further defined
organic fields as locations within an APN or
PLS Section containing organic producers
and that only use organic approved pesticides
for 3 consecutive years. Organic-approved pes-
ticides were based on checking the individual
pesticide labels and/or the Organic Materials
Review Institute Product List and Washington
State Department of Agriculture Organic In-
put Material List. Because field polygons change
when crops are rotated or across years, we ras-
terized the field polygons at 30 m and overlaid
the annual rasters to determine whether a given
polygon had only organic-approved pesticide
use for the current and prior two years. We
tested models with a less stringent definition
including locations that only use organic ap-
proved pesticides for the current year within an
APN or PLS Section containing organic produc-

ers (fig. S3). There is no perfect means to iden-
tify organic fields and it is likely we measure
organic fields with some error. Measurement
error in the amount of surrounding organic
agriculture and other landscape covariates
(i.e., the independent variables) would bias
our coefficient results toward zero (attenua-
tion bias).

Surrounding characteristics

We define surrounding as a circular area of
2.5 km radius from the centroid of the focal
field and measure organic area (ha), total crop-
land area (ha) and share of the 1963-ha buffer
cropped by the focal farmer (minus the focal
field area), correcting for multi-cropped fields
(19). A 2.5-km radius was chosen based on the
landscape buffers used in previous research
on natural enemies and pests (16, 32), though
we extend out to 5 km as a robustness test
(Supplementary Methods; fig. S2). We mea-
sure surrounding as the centroid of the focal
field to centroid of other fields, rather than a
buffer around the perimeter focal field edge
to avoid the nonlinear changes in buffer area
with size of the focal field (Supplementary
Methods). We further limit surrounding to in-
clude fields that were active during the grow-
ing season of the focal field. In some years
(2018 and 2019), date inactive was missing in
a large fraction of observations. Based on the
monthly distribution of end dates in other
years, we determined the missing end dates
were the end of the year.

Statistical approach

The goal of our analysis is to understand how
surrounding organic fields affect pesticide
use. In the ideal scenario, we could randomly
assign surrounding fields to be organic or con-
ventional and measure the impact on pest
control on focal fields. As that is infeasible,
we leverage a panel (or longitudinal) data ap-
proach to remove heterogeneity unique to
farmers, local regions (defined by Public Land
Survey Township; ~93 km?), years, and/or crops
using a combination of dummy variables in a
least-squares dummy variable approach (also
referred to as a within estimator or fixed effects
in causal inference). These dummy variables
remove characteristics that may be correlated
with both the amount of surrounding organic
agriculture and the level of pest control, as
such unobserved variables would bias our co-
efficient estimate on the effect of surrounding
organic fields. For example, time-invariant var-
iables such as soil quality could be correlated
with both the amount of organic agriculture
and the amount of pesticides applied whereas
general trends could be correlated with both
pesticide use and the share of organic agricul-
ture. Failing to account for such variables would
induce a correlation between our covariate of
interest (surrounding organic agriculture) and
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our errors thereby biasing our coefficient esti-
mate (47-49). Ideally, we would also test mod-
els with field dummy variables, but because
field is not a constant unit, but rather changes
over time with crop rotations or planting de-
cisions, this is not feasible.

As some fields use zero pesticides in a grow-
ing season, we inverse hyperbolic sine trans-
form our data to accommodate both nonlinear
relationships and zero pesticide use (35). We
premultiply pesticide use (kilograms per hect-
are) by 100 to reduce distortions for small val-
ues (35). A version of our model with region
and year dummy variables is specified as,

IHS (Yirt) = v, + 8 + alHS (Surround_Org;,,)+
IHS(Xirt) B+ Orgint + €ire
1)

where THS(y;,¢) denotes IHS-transformed pes-
ticide use (kilograms per hectare) of farmer f
on field 7 growing in region r and year ¢. Our
covariate of interest is the amount of surround-
ing organic ha, denoted Surround_Org, with
surrounding cropland extent (ha), focal field
size, and share (fraction) of surrounding area
cultivated by the focal farmer denoted by the
vector X. As with log-log elasticities, IHS-IHS
transformation can be interpreted as the per-
centage change in pesticide use for a 1% change
in a covariate. The parameters vy, and §; denote
region and year dummy variables that absorb
region-specific characteristics (e.g., soil quality)
and year shocks that affect all fields in Kern
County (e.g., weather). Other specifications
included dummy variables to absorb charac-
teristics shared by fields growing the same
crops (pest susceptibility, value) and those
grown by the same farmer (e.g., farmer risk
preferences).

The above specification yields a single slope
estimate for the effect of surrounding organic
area on pesticide use, with an indicator var-
iable, Org, allowing for only a different inter-
cept for organic and conventional fields. To
test the hypothesis that focal fields may have
differential responses to surrounding organic
area and other covariates based on their man-
agement (organic, conventional), we reran our
analysis individually for organic and conven-
tional focal fields by dropping the Org co-
variate and subsetting the data for organic
and conventional fields, respectively. This allows
for a unique intercept and a unique slope for
the effect of surrounding organic area (and all
other covariates) on organic versus conven-
tional focal fields. We also reran our analysis on
different types of pesticides (insecticides all,
insecticides only, insect/fungicides, herbicides
only, fungicides only), to evaluate whether the
relationship between surrounding organic and
pesticide use was dependent on the target taxa.
Lastly, in an alternative approach, rather than
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run separate regressions for organic and con-
ventional fields, we include an interaction
term between Org and Surround_Org, which
captures the differential effect of surrounding
organic agriculture on pesticide use on organic
fields. We interact Org with all covariates for
similar reasons. We include the level terms
(Org, Surround_Org, covariates). We de-mean
Surround_Org to allow for a more convenient
interpretation of the dummy variable (50). We
use this approach for our simulation because
it provides a joint parameter distribution, but
continue with separate regressions in our main
results such that the dummy variables or fixed
effects capture the heterogeneity unique to
conventional and organic farmers, regions
and crops.

Simulation

To predict total pesticide use under different
hypothetical levels of organic agriculture we
proceeded in four steps. First, we estimated
a version of Eq. (1) with an interaction terms
between surrounding organic and the dummy
variable for whether a field was organic, as
described above. In addition, we interact the
organic dummy variable with all other var-
iables, to allow for heterogeneous response of
organic agriculture to changes in field size,
the extent of agriculture, etc. The coefficients
on surrounding organic were qualitatively un-
changed from T,Y,C,F model run separately
(fig. S1, T,Y,C,F versus T,Y,C,F-Int), but in addi-
tion we get a coefficient for the direct impact
of organic agriculture on insecticide use. Sec-
ond, we randomly draw the parameters from
the joint distribution of the estimates. Third,
we then predict the change in insecticide use
from a level of zero organic farming for all lev-
els of organic agriculture between zero to 25%
based on the random parameter draw. Spe-
cifically, we predict,

W+ o, ShareOrganic + o,,ShareOrganic x IHS(SurroundOrganic) |
+0,c(1 — ShareOrganic) x ITHS(SurroundOrganic) x 100 L
(2)

for a vector of hypothetical organic agriculture
shares (ShareOrganic) and taking the direct
impact of organic agriculture on insecticide
use (0,) as well as the spillovers of organic
agriculture on organic (o,,) and conventional
(0i0) agriculture into account. We predict this
equation 2000 times using random draws
from the joint distribution of regression co-
efficients following the approach of (51). Each
line in Fig. 4 represents an individual predic-
tion. The other components of the simulation
are the current mean level of insecticide use
on conventional fields (1) (Table 1) as well as
the area of surrounding organic agriculture
(SurroundOrganic), defined as the share of
organic agriculture multiplied by the mean

area of current agricultural land in the buffer.
The specific value of u is less important be-
cause the outcomes are normalized to percent.
We focus on two scenarios regarding the spa-
tial distribution of organic agriculture. The
first scenario assumes an equal spatial dis-
tribution of organic agriculture. Here, we
assume that the share of organic fields in sur-
rounding area equals the overall share of organic
agriculture or in the second scenario (“Clustered”)
we assume that organic and conventional
fields are spatially concentrated such that all
fields in the buffer of the focal fields are
either organic, if the focal field is organic, or
conventional, if the focal field is conventional.
For all simulations, we assume that all other
covariates remain unchanged. We present a
similar approach, but with parameter esti-
mates and standard deviation from table S3
for Insect All in fig. S12. Although this approach
is simpler, it also assumes independent pa-
rameter distributions Because 0,, 0, and o,
come from the three different regressions (All,
Org, Conv, respectively). However, the simula-
tion results remain unchanged. In both ap-
proaches, the simulation predicts the net change
in [HS-transformed insecticides. The level of in-
secticides can be approximated from the IHS
result using sinh(IHS(prediction) * THS(insecticide
use on conventional fields with no surround-
ing organic agriculture)/100) (Fig. 4) (54). This
back transformation is just an approximation
for several reasons. Most importantly, the sim-
ulated outcome is a weighted mean of IHS-
transformed insecticide use on conventional
and organic fields. Because sinh(a;IHS(y;) +
aIHS(,)) = a; sinh(THS(yy) + a, sinh(THS(y,),
the approximation differs from the true value.
Thus, figure 4 accurately illustrates the IHS-
transformed outcomes, but it should not be
used to calculate insecticide reductions in ab-
solute levels beyond a rough approximation.

Nationwide extension

To test the external validity of our results, we
repeat our analysis at the national level. Be-
cause we lack field-level data at the national
scale, we focus on the aggregate pattern and
test whether they match the predicted, hump-
shaped pattern of aggregate pesticide use in
response to organic agriculture from our Kern
County simulation. For this approach, we com-
bine data from the USGS Pesticide National
Synthesis Project with data from the USDA
Census of Agriculture.

Organic agriculture

The USDA Census of Agriculture provides data
on the number of operations with certified or-
ganic sales, the number of operations with
cropland and the total acreage of cropland at
the county level for 2007, 2012, and 2017. To
compute the county-level land under organic
agriculture, we use the number of operations
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with certified organic sales multiplied by the
average farm size (cropland/number of operations
with cropland), both at county-level. We include
county and year dummy variables in our em-
pirical estimation to account for the possibility
that we systematically over or underestimate
the area of organic agriculture due to e.g.,
differences in farm sizes of conventional and
organic operations.

Pesticides

We use pesticide use data from the USDA Cen-
sus of Agriculture and the USGS Pesticide
National Synthesis Project. The USDA Census
of Agriculture collects data on the area treated
with chemicals to control weeds, insects, nem-
atodes, and fungi for 1997, 2002, 2007, 2012,
and 2017. As a second measure, we use data
from the USGS that combines farm surveys
of pesticide use with estimates of harvested
crop acres to produce county-level data on var-
ious pesticides for every year between 1992
and 2017. We select the two most-used herbi-
cides and the two most-used insecticides from
Fernandez-Cornejo et al. (52) for our analysis.
We measure pesticide use based on the kilo-
grams of active ingredients.

Cropland

More than 78% of pesticides in the US are used
on four crops: corn, soybeans, potatoes and
cotton (52). We therefore control for cropland
and these four crops in all regression speci-
fications as they may be correlated with the
expansion of organic agriculture. Further, hay
receives little pesticides, and we control for
the area under hay production as well.

Econometric analysis

The results from the simulation of aggregate
insecticide use in Kern County suggest that
insecticide use increases initially with organic
agriculture due to the increased use of insec-
ticides on conventional fields in response to
organic agriculture. This effect is outweighed
by the reduced use of insecticides on organic
lands at higher levels of organic agriculture.
Here, we test whether pesticide uses increase
initially and then decline in response to an
increasing area under organic agriculture. We
therefore estimate,

IHS(Pest;) = a:IHS(OrganicLand; )
0o IHS(OrganicLandy;)® + IHS(Xi) B+ v; + & + &

(3)

where Pest; is the area treated with insecti-
cides and herbicides in county 7 and in year ¢,
OrganicLand;, the area under organic agricul-
ture, and X is a vector of covariates including
total cropland and the area under corn, soy-
beans, potatoes, cotton, and hay. The last three
terms are county dummies (fixed effects), year
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dummies, and the error term. In a robustness
test, we use the quantity of active ingredients
of the two most widely used herbicides and
insecticides as the outcome variable. In addi-
tion, we estimate a specification in which we
drop the squared term of organic land to test
whether pesticide use is monotonically declin-
ing with organic agriculture, as predicted by
our second simulation scenario. We report the
Akaike information criterion and the Bayesian
information criterion for all specifications.

We transform all variables using inverse

hyperbolic sine transformation. We cluster
standard errors using two-way clustering at
the county and year level. We report our re-
sults in tables S12 to S14.
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